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In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational
rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents.
A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals
around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure pro-
file as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite
number of rational regions, and analyzed mathematically by classifying the gradient-supporting irrational
numbers into subsets. Applying these results to a given rotational-transform profile in cylindrical geometry,
we find magnetic field and current density profiles compatible with the fractal pressure.

I. INTRODUCTION

Many models applied to plasmas exhibit fractal behav-
ior [1]. Energy cascades across many self-similar scales of
eddies in turbulence theory [2, 3], and fractal constructs
like the Hausdorff dimension have characterized proper-
ties of turbulence experimentally [4]. Magnetic field lines
are integrable in axisymmetric configurations, but three-
dimensional (3D) effects break up the paths into mag-
netic islands and fractally chaotic volumes [5]. Applied
to the structure of toroidal field lines, the Kolmogorov-
Arnol’d-Moser (KAM) theorem [6] explains the persever-
ance of particularly irrational flux surfaces, which remain
closed despite integrability-destroying perturbations to
the boundary. In this work, we investigate how fractality
appears in a simple model of plasmas, ideal magnetohy-
drodynamics (MHD).

A frequent first approach to finding plasma equilibria,
ideal MHD treats the plasma as a perfectly conducting
fluid. Equilibria exist if macroscopic forces from the pres-
sure p, current density J , and the magnetic field B are
in balance, as described by

∇p = J ×B. (1)

Solutions to this force-balance equation are straightfor-
ward for axisymmetric systems [7], but incorporating 3D
effects can introduce fractal properties into p,B, and J .

In this work, we seek strictly ideal, zero-Larmor-radius
MHD equilibria that satisfy three conditions. First, the
pressure must be non-zero somewhere, such that a pres-
sure profile peaked on-axis satisfies p(0) 6= p(r →∞).
Second, the current

∫
C
J(r) · dA must be finite for any

surface C and its surface element dA. Third, the mag-
netic field B should be continuous. Several sets of ideal
equilibria satisfy these conditions concurrently, but all
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of them rely on either non-smooth features or quantities
that are discretely defined [8].

A smooth profile is defined to be continuously differen-
tiable, namely C1. Conversely, we define a non-smooth
profile to be C0, so that it is continuous itself but has dis-
continuities in its first derivative. Even though equilibria
with nested flux surfaces often assume smooth pressure
and current profiles, resonant perturbations to plasma
boundary conditions can lead to unphysical infinite cur-
rents where the pressure smoothly varies. This problem
can be avoided by allowing for non-smooth features and
fractality.

Infinite currents arise with smooth pressure profiles
due to a classical small divisors problem [9]. We assume
ideal MHD equilibria with nested flux surfaces, where p,
B and J are all flux-surface functions. In this case, the
parallel current density can be written J‖ = λB, and the
perpendicular current density is produced by pressure
gradients: J⊥ = B ×∇p/B2. Enforcing charge con-
servation ∇ · J = 0 gives ∇ · (λB) = B · ∇λ = −∇ · J⊥.
Assuming toroidal geometry with straight-field-line coor-
dinates, the Fourier components of the differential oper-
ator B · ∇ become (B · ∇)mn = i

√
g−1(mι-− n), where

ι- is the rotational-transform and m, n are the poloidal
and toroidal mode numbers, respectively [7]. Solving for
each harmonic of the parallel current’s Fourier coefficient
gives

λmn =
i(
√
g∇ · J⊥)mn

mι-− n + ∆mnδ(ι-− n/m), (2)

where
√
g is a Jacobian that satisfies

√
g−1 = B · ∇ζ for

the toroidal coordinate ζ.
Across resonant flux surfaces ι- = n/m, the δ-function

spike in current density is integrable and only produces
current discontinuities. However, the first term shows
the current density behaves like 1/x near a resonant flux
surface at x = 0; integrating such a current density leads
to a logarithmically divergent current. To eliminate these
unphysical infinite currents at resonances, either term in
the numerator must be zero where ι- is rational. The
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Jacobian
√
g
mn

depends on the field geometry, so it does
not vanish for arbitrary boundary conditions. Therefore,
a 3D equilibrium must satisfy ∇p = 0 on all resonances
ι- = n/m to globally avoid infinite currents.

Plasmas in models other than ideal MHD remedy these
resonant currents by changing field topology. In resistive
MHD, tearing modes open resonant rational surfaces into
islands, wherein the pressure is uniform to zeroth order.
When field line structure is taken as a Hamiltonian sys-
tem, overlapping islands lead to chaotic field lines that
fill volumes ergodically [10], so that the plasma pressure
becomes uniform within each chaotic region. In contrast,
ideal plasmas obey Alfvén’s frozen flux theorem, so that
field topology is fixed. Equilibria that begin with nested
flux surfaces must keep them for all time if variations are
ideal. Thus, the perturbed system must accommodate
infinite currents or else tolerate a non-smooth pressure
profile. If the pressure is flat near every rational, but not
uniformly trivial (p(r) = 0), then a fractal profile must
emerge where the pressure only changes on flux surfaces
with irrational rotational-transform.

We restrict our attention to ideal MHD to focus on only
one of two effects that complicate 3D equilibria. Plasmas
in toroidal geometry exhibit (i) stochastic field lines that
wander chaotically about the plasma volume, and (ii) a
corresponding flattening of the pressure profile which en-
sures B · ∇p = 0. Though the two effects arise together,
the second can be studied alone in a simplified plasma
model that is both ideal and two-dimensional. How can
a fractal pressure be discretized appropriately for equilib-
rium calculations, and how will the fractal structure be
reflected in other plasma parameters? These questions
can be answered by considering ideal MHD equilibria in
cylindrical geometry with fractal pressure as an input, al-
lowing the effects of fractality to be studied in isolation.

The physics of this fractally flat pressure profile will be
examined in this paper. In Section II, a method of gener-
ating a physical pressure profile will be shown, grounded
in the Diophantine condition of the KAM theorem; this
pressure profile will be shown to be fractal. Section III
describes various algorithms for approximating the frac-
tal pressure profile numerically, and Section IV employs
number theory to sort the irrational numbers by distance
from the rationals. Section V shows ideal MHD equilib-
ria compatible with the discretized fractal pressure, as
well as smoothed equilibria that approximate the resis-
tive case.

II. RATIONAL INTERVALS AND THE DIOPHANTINE
PRESSURE

Ideal MHD cannot tolerate pressure gradients on res-
onant rational surfaces. This constraint applies not just
to the rational number itself, but a neighborhood of fi-
nite extent that surrounds it. The small-denominator
singularity 1/(mι-−n) extends to nearby locations, since∫ ζ
ε
dx/x is unbounded for ε < ζ � 1 as ε → 0. Thus,

an entire neighorhood ( nm − δ, nm + δ) must be flattened
around each rational ι- for some choice of δ = δ(m,n).

This situation of defining neighborhoods around ratio-
nal centers is reminiscent of the Diophantine condition
in KAM theory, a concept which bounds the effective
width around each rational that is affected by resonance.
Perturbations at rational ι- become more severe as the
system deviates further from axisymmetry, so the Dio-
phantine neighborhoods around each rational increase in
width with a larger perturbation magnitude. Further-
more, the order of a given rational surface also matters:
higher-order rationals (large m) have less importance and
affect a smaller neighborhood than low-order rationals
(small m). The KAM theory posits a width δ that satis-
fies these conditions: δ(m,n) = d/mk, where d and k are
parameters that can be tuned to approximate the shape
of a general 3D perturbation.

A. Defining the Diophantine set and pressure

In the spirit of flattening the pressure profile where the
rotational-transform is too nearly rational, we define the
rational set ι-R = ι-R(d, k) as

ι-R(d, k) =

{
ι- : ι- ∈

⋃

∀n,m

(
n

m
− d

mk
,
n

m
+

d

mk

)}
. (3)

In other words, ι- is “effectively” rational if it lies within
a distance d/mk of a rational number. A flattened re-
gion surrounds each rational number, though these re-
gions can overlap and merge if their widths 2d/mk are
large enough.

Even among this infinite number of rational inter-
vals, some irrational numbers fall outside of the set ι-R.
This class forms the sufficiently irrational Diophantine
set Dd,k, defined as the complement of the rational set:
Dd,k ≡ R\ ι-R(d, k). The more general Diophantine set D
is the union of all Dd,k for any d and k.

The set of Diophantine numbers Dd,k for a particular d
and k is a subset of the irrationals. Since every irrational
number is infinitesimally close to a rational—in other
words, the irrationals are accumulation points for the
rationals—every Diophantine point directly neighbors a
rational neighborhood. Thus, all reals in the Diophantine
set are totally disconnected from one another.

The two Diophantine parameters, namely d and k,
strongly affect the distribution of Diophantine numbers
and the shape of the resulting pressure profile. The mag-
nitude parameter d measures the strength of a 3D per-
turbation: as d increases, the size of every rational neigh-
borhood increases linearly. The scaling parameter k de-
termines the decay of this perturbation at higher-order
resonances. A higher value of k causes rational windows
to shrink rapidly at high-order resonances, as in the case
where several large islands dominate with many nested
flux surfaces in between; a lower k allows a perturbation
to penetrate down to higher-order rational resonances,
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FIG. 1. An illustration of low-order rational windows (top),
the resulting Diophantine pressure gradient (middle), and its
integral (below), all shown versus rotational-transform ι-. The
above calculations used Diophantine parameters d = 0.15 and
k = 2.1. For legibility, the profile is only flattened on a small
number of rationals, with five levels of the Farey tree shown
(n/m ∈ F5, defined in Section III).

and is analagous to equilibria with many small islands
nested between each other.

We choose to examine a pressure gradient which is
nonzero only where the rotational-transform is Diophan-
tine:

dp(ι-; d, k)

dι-
=

{
1, ι- ∈ Dd,k;

0, otherwise.
(4)

In this case, the pressure gradient is pointwise discontin-
uous on all Diophantine irrationals and trivial otherwise.
A discretized example profile p(ι-) is shown for d = 0.15
and k = 2.1 in Fig. 1.

For decades, non-smooth pressure profiles have been
regarded as unconventional and even disastrous. Grad
[11] anticipated that staircase pressure profiles would
arise in ideal, toroidally confined systems, terming the
resulting fractal system “pathological.” Despite this
early judgment, the non-standard Diophantine profile
is tractable in the light of modern measure theory and
knowledge of fractal structures [12, 13].

B. Non-emptiness and topology of the Diophantine set

Before examining the physics of the Diophantine pres-
sure, we must ensure the mathematical possibility of this
construction. Since all Diophantine points are discon-
nected, there is no interval of any length where the pres-
sure has non-zero gradient throughout. How can an over-
all pressure gradient exist where only discrete points and
not intervals contribute to changes in pressure? Strictly
speaking, the only possibility is that the Diophantine set
is uncountably infinite for some d and k, since it takes
this cardinality and no less for a set of discrete points to
span non-zero measure.

While number and measure theory are necessary for
further understanding of this issue (see Section IV for
details), one fundamental fact can be derived from sur-
prisingly simple arguments: a non-trivial fractal pressure
exists for some d and k. Proving this fact about the Dio-
phantine set relies on solving the problem in reverse, or
finding an upper bound on the measure of its comple-
ment. In a method akin to the proving the vanishing
measure of the Cantor set, we consider the total size of ra-
tional regions. Precise measurement of this size requires
checking for overlaps between each pair of rational re-
gions, a process which is computationally expensive but
which only reduces the total width of rational regions. Ig-
noring overlap thus overestimates the measure of ι-R and
underestimates the measure of irrational points in Dd,k.
As such, we find an upper bound on the total rational
length by evaluating the sum:

Rational length L =

∞∑

m=1

2d

mk
φ(m), (5)

where φ(m) is Euler’s totient function [14]. Since
φ(m) counts all integers less than m which are rela-
tively prime with m, it is always true that φ(m) < m.
Therefore, L < 2d

∑∞
m=1m

−(k−1). This expression is
the well-known hyperharmonic series, which converges
if (k − 1) > 1 and diverges otherwise. As long as k > 2
and d is sufficiently small, the length L has a value less
than one, and there is space left over for the Diophantine
numbers. Since the measure of the Diophantine numbers
is non-zero for some choices of d and k, there exists a
non-trivial Diophantine pressure profile.

A crucial result from this proof concerns the critical
case of k = 2. At this point, the rational regions exactly
cover all space, and the pressure becomes uniformly zero.
Still, a countable infinity of irrationals exist in the Dio-
phantine set at k = 2. This known boundary case will
be mentioned frequently in the following.

Topologically, the Diophantine pressure profile is simi-
lar to the fat Cantor set [15], which is also totally discon-
nected and can have either empty, partial, or full mea-
sure. Other research has benefited from such compar-
isons, for instance by providing fat-fractal scaling laws
for islands around KAM surfaces [16]. Here, we suggest
that the set of Diophantine numbers is homeomorphic to
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the fat Cantor set for some d, a connection suggested by
Brouwer’s theorem [17]. The set of Diophantine numbers
Dd,k is already much like the Cantor set, in that it is (i)
non-empty for some small d > 0 and k ≥ 2, (ii) compact
(closed and bounded), (iii) totally disconnected, and (iv)
metrizable (which is true of any set in the real numbers).

However, to definitively satisfy Brouwer’s theorem, the
Diophantine numbers must also be a perfect set, which
by definition contains no isolated points. For the Dio-
phantine numbers to comprise a perfect set, every neigh-
borhood (ι- − ε, ι- + ε), ε > 0 around elements ι- ∈ Dd,k
must contain another Diophantine number. While this
is true of some elements of the Diophantine set, we have
not been able to prove that it is true for all elements
ι-. Further, there are certain values of d where the set
is clearly not perfect, such as the highest d before Dd,k
is empty: here, only two well-separated noble numbers
remain in the set. Nonetheless, it seems likely that there
are particular values of d and k for which the Diophan-
tine set can be understood as a Cantor-like distribution
of irrationals.

C. Self-similarity of mediant windows

In densely packed regions of Diophantine irrationals,
the distribution of numbers can be shown to be fractal.
With this insight comes a series of techniques for analyz-
ing self-similar functions, parallels which should be ex-
ploited to gain further insight into implications for ideal
MHD equilibria.

Fractal objects are self-similar on all scales [13]. A lit-
eral definition of self-similarity can be applied to discrete
systems like the distinct rational intervals considered in
the Diophantine set. In this case, the relative sizes of
rational and irrational regions at a given scale can be a
proxy for length, so that a constant ratio of sizes over
several levels of rational perturbations is indicative of
self-similarity and fractality.

As will be explained in more detail in Section III, the
rational regions in a given interval can be built up from
low- to high-order by selecting the mediant rationals be-
tween two neighboring rationals p0/q0 and p1/q1. The
first mediant of these two rationals, guaranteed to lie be-
tween them and higher order such that q2 > q0, q1, is
p2/q2 = (p0 + p1)/(q0 + q1). The next mediant, between
p1/q1 and p2/q2, will be higher order still. We will study
neighboring pairs of rationals in these mediant sequences.

If the profile scales self-similarly, the irrational region
between two neighboring rationals should have constant
length in proportion to the distance between the ratio-
nals. In other words, the ratio (Irrational/Total) (shown
in Fig. 2) must be constant for rationals of all orders. We
begin with two rationals p0/q0 and p1/q1, and define the
irrational interval between them as

(
p0
q0

+
d

qk0
,
p1
q1
− d

qk1

)
. (6)

0.616 0.617 0.618 0.619
Real line

←
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←Total→
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FIG. 2. Two pairs of mediant rationals are shown,
{p0/q0, p1/q1} and {p2/q2, p3/q3}. The rational windows
around each rational are shown in red, and the Diophantine
irrational region is shown in black in between. If the ratio of
lengths (Irrational/Total) is constant for pairs of mediants at
all scales, the distribution of rational windows is fractal.

Continuing to larger denominator rationals on an alter-
nating path, the next mediants are

p2
q2

=
p0 + p1
q0 + q1

,
p3
q3

=
p0 + 2p1
q0 + 2q1

, (7)

and the corresponding irrational interval lies between
p2/q2 + d/qk2 and p3/q3 − d/qk3 .

If these two levels are to be self-similar, the ratio of the
irrational length to the total length must be constant:

(
p1
q1
− d

qk1

)
−
(
p0
q0

+
d

qk0

)

(
p1
q1
− p0
q0

) =

(
p3
q3
− d

qk3

)
−
(
p2
q2

+
d

qk2

)

(
p3
q3
− p2
q2

) .

(8)
Using the definitions for p2, p3, q2, and q3 implied above
eventually gives:

qk1 + qk0
(q0 + 2q1)k + (q0 + q1)k

=

[
q0q1

q20 + 3q0q1 + 2q21

]k−1
. (9)

The case of k = 2 has been shown to be a boundary
case for the Diophantine numbers. Assuming k = 2 in
the above leads to an analytically solvable equation with
the following meaningful solutions:

q1 = ±
√

2

2
q0 and q1 =

1±
√

5

2
q0, (10)

where (1 +
√

5)/2 = ϕ is the golden mean. Any possible
ratio q1/q0 that fulfills the fractal condition must be ir-
rational, which is strictly impossible given that q0, q1 are
integers by definition.

However, it is possible that qi+1/qi → ϕ for large val-
ues of i, or for relatively high-order rational resonances.
Is there a number whose series of converging mediants has
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denominators q0, q1, q2 . . . such that the eventual ratio of
successive denominators approaches the golden mean ϕ?

A relevant limit, first noted in 1611 by Johannes Kepler
[18], shows that any Fibonacci sequence {Fi} satisfies this
property at large i:

lim
i→∞

Fi+1

Fi
= ϕ. (11)

It is well known that the sequence of mediants {pi/qi}
that converge to the golden mean itself have denom-
inators qi that form a Fibonacci sequence, and thus
limi→∞ qi+1/qi = ϕ. More generally, the sequence of
mediants that converges to any noble number has the
same large-i limit as above. Thus, the fractal pressure
is perfectly self-similar at k = 2 in the regions near each
noble number. In this sense, the Diophantine pressure
profile is demonstrably fractal.

This result was shown for due to its analytic tractabil-
ity, but it applies to a trivial result since the Diophantine
pressure is uniformly zero at k = 2. However, keeping d
constant and increasing k only expands the Diophantine
set, so that more irrationals become elements and none
are lost. It is thus feasible that the Diophantine numbers
maintain their self-similar character for higher k where
the pressure profile is non-trivial.

III. DISCRETIZATION WITH A FRACTAL GRID

This section will explain which numerical representa-
tions of the Diophantine pressure profile successfully con-
verge to the fractal profile as grid resolution increases.

For purposes of comparison, it is necessary to define a
proxy for “convergence.” The fractal profile can never be
calculated exactly, so a computer cannot directly measure
the difference between the exact version and an approx-
imation. However, a well-defined quantity can be used
despite the endless intricacies of the fractal pressure: the
integrated pressure in the system,

pmax ≡
∫
p′(ι-)dι- ≈ lim

N→∞

N∑

i=1

p′(ι-i)∆ι-i, (12)

where ι- is taken as a proxy radial coordinate. Note that
the approximate equality is valid for Riemann-integrable
discretized functions, but is never valid for the full Dio-
phantine pressure. If a discretized profile matches pmax

to the exact value from the fractal case, the total size of
the gradient-sustaining regions (consisting of irrational
points in the fractal case and “irrational” intervals in the
discretized version) is well approximated. For instance,
it has been shown that for k = 2 no gradients remain in
the fractal pressure, so that pmax(k = 2) ought to tend
toward zero. Though this instance leads to a trivial pres-
sure, it is chosen as a test case here because the exact
solution is known.

Let {ι-i}Ni=0 be a finite set of grid points used to model
p′(ι-). Out of convenience, most numerical methods use

10−2

10−1

pmax Regular grid (ξ = ϕ/1.62)

Regular grid
(
ξ =
√

2/1.42
)

Regular grid (ξ = π/3.15)

Maximum denominator

Farey tree steps

101 102 103 104 105 106

Grid points

10−2

100

102

104
Computational time [s]

FIG. 3. A comparison of different discretization methods for
a known case, k = 2, where pmax = 0. The top figure plots
pmax as a function of grid resolution, showing power law con-
vergence for irregular grids based on the Diophantine condi-
tion and inaccurate convergence for regular grids on irrational
values. The bottom figure compares computational time for
the two methods on irregular grids.

regularly spaced grids, where ∆i ≡ ι-i − ι-i−1 is a con-
stant for all i. The most trivial example cases define a
normalized domain, spanning from 0 to 1, such that the
values ι-i lie on rational numbers i/N . Due to the basic
definition of the Diophantine p′(ι-), all values ι-i lie within
flattened rational regions: p′(ι-i) = 0 for all i. For the
k = 2 case, this answer is correct, but such a scheme can
never predict the shape of p(ι-) for higher k. The method
neglects all locations where the pressure changes.

A straightforward alternative strategy redefines the do-
main: let ι- span from zero to some irrational value ξ,
which sets the grid points ι-i = iξ/N to be irrational. De-
pending on the precise values of these chosen grid points,
some ι-i may lie outside of all rational windows such that
p′(ι-i) = 1. As the number of grid points N increases,
more irrationals will join the pool of selected quantities,
so that the approximation converges toward a certain
shape for p(ι-).

Nonetheless, this scheme of selecting regularly spaced
irrational numbers is not aligned with the pressure pro-
file under consideration. For instance, it was shown that
the k = 2 Diophantine pressure is fractal near noble val-
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FIG. 4. A series of fractal grids, shown from low resolution
(top) to high resolution (bottom) and calculated with d = 0.1
and k = 2.1. Each grid contains the lower-resolution grids
above it (black), but has added new points (red) that border
the rational windows of higher-level Farey trees.

ues of ι-, which means an infinite number of Diophantine
points can exist near each noble number if d is small
enough. A regular grid of irrationals may choose one
of these points, or it may land within a rational region
and not contribute: in any event, the correspondence be-
tween the grid and the gradient-supporting Diophantine
values is essentially random. Increasing the number of
grid points to any higher but still finite value will not cor-
rect this situation, meaning the numerical scheme does
not converge to the correct answer. Fig. 3 shows this
errant behavior for several regular grids with different ir-
rational endpoints ξ ≈ 1 (shown as white, grey, and black
squares). Note that these approximations asymptote to
the incorrect value of pmax, and are thus informed not
by the true fractal profile (which has pmax → 0) but by
numerical details of where grid points lie.

More satisfying convergence properties can be attained
by incorporating the Diophantine set directly into the
procedure for building the grid. Distributing grid points
at the edges of each rational interval leads to a well-
behaved numerical scheme, so that the error reliably de-
creases with increasing resolution. Since an infinite num-
ber of flattened regions cover much of the real line, a
discretization of this grid must choose the most impor-
tant subset of these regions that allows computational
efficiency without sacrificing mathematical accuracy. In
effect, this requirement necessitates an ordering of the
rational numbers. The ordering should prioritize the ra-
tionals with small denominators, but also needs to select
values which are relatively far from other rationals that
have already been chosen.

Such a scheme is realized by Farey trees, which begin
with two neighboring rationals and successively list every
higher-order rational in between. If ι-(r) ∈ [0, 1], then an
Lth-order truncated Farey tree FL can be derived from

10−5 10−4 10−3 10−2 10−1

d

10−5

10−4

10−3

10−2

10−1

γ

γ(d)

pmax(d, k = 2) ∝ (# grid points)−γ

FIG. 5. The rate of convergence of the fractal grid for k = 2.
Higher values of d converge much more rapidly with fewer
grid points.

the initial condition F0 = {0, 1} recursively:

F∗i =

{
nL + nR
mL +mR

∣∣∣∣ ∀ adjacent
nL
mL

,
nR
mR
∈ Fi−1

}
;

Fi = F∗i
⋃
Fi−1.

(13)

The points of interest for the Diophantine pres-
sure profile are not the rational numbers in FL,
but the edges of the flattened regions around them:
{n/m± d/mk | ∀n/m ∈ FL}.

As more rationals are added with each Farey tree order,
many flattened regions will overlap other, lower-order ra-
tionals that have already been considered. Each new ra-
tional region (n/m− d/mk, n/m+ d/mk) must be com-
pared to other nearby regions. If the interval lies entirely
inside a larger interval, it is ignored; if it lies partially in-
side another interval, the lower-order interval is redefined
to encompass a wider flattened region.

Thus, the scheme of approximating a fractal grid is as
follows. Choosing the Diophantine parameters d and k
from the start, the method calculates {n/m± d/mk} for
all rationals in F0. This scheme repeats for each Fi from
F1 to the desired resolution FL, with the addition of a
check for overlaps with previous regions. Fig. 4 displays
several possible resolutions of such grids.

Both the regular- and irregular-grid methods of
discretization are applied to the known test case
k = 2, pmax → 0, with results shown in Fig. 3. Unlike
regularly spaced grids, the Farey tree grid has desirable
convergence properties: pmax follows a power law toward
the infinite-resolution limit. Furthermore, the Farey tree
is also a relatively efficient method for ordering the ra-
tionals. For example, consider an alternate scheme that
develops a grid with all rationals n/m with m < M , for
some finite integer M . This process, labeled “Max de-
nominator” in Fig. 3, converges in the same way that the
Farey tree grid does; however, it counts rationals in an
inefficient order and wastes more time discarding over-
lapping regions. This approach takes five times longer
than using the Farey tree method for resolutions that
have comparable numbers of grid points.

Interestingly, the power law convergence of pmax to its
ultimate value with increasing numerical resolution is de-
pendent on the Diophantine parameters. For k = 2, the
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scaling is shown versus d in Figure 5. If the maximum
pressure scales as pmax ∝ N−γ , then the figure shows
γ change as a function of d. For small d, tiny rational
windows are flattened around each rational, so that the
pressure takes many more rationals to converge to a rea-
sonable approximation; large d have much larger γ and
thus converge more quickly to accurate pmax. A power-
law scaling for γ(d) is evident for d� 0.1; as d increases,
though, this relationship is distorted due to overlapping
of rational regions.

IV. LEBESGUE INTEGRATION AND ROBUST
IRRATIONALS

Discretizations of the Diophantine pressure converge
as resolution increases, as long as they are dealt with on
fractal grids. However, whether the numerical limit accu-
rately models the fully fractal case is a different matter.
We are proposing a plasma equilibrium where the pres-
sure only changes on sufficiently irrational flux surfaces.
Where are these irrationals distributed in space, and how
much plasma volume do they cover?

This final question concerns measure, a quantity that
represents the size of a set of numbers. In common par-
lance, the measure µ = µ(A) is the length of the fewest
possible intervals that can cover the set of numbers A
[19]. Ultimately, we seek the measure of the Diophan-
tine set µ(Dd,k), a physical quantity that evaluates the
fraction of the plasma volume that can support pressure
gradients.

From the perspective of regular-grid Riemann integra-
tion, a paradox emerges in calculating µ(Dd,k). The Dio-
phantine set only contains disconnected irrational num-
bers, yet these numbers must make up some measure
µ(Dd,k) along the real line for the pressure to be any-
where non-zero. As stated in Section II, the Diophantine
set must be uncountably infinite for a non-trivial pressure
to exist. It was shown that this must be the case because
the lower bound on the measure of the Diophantine set
is above zero for k > 2.

Getting more specific than this lower bound on the
value of pmax becomes difficult, however, since the Dio-
phantine pressure profile is not Riemann integrable. As
explained in Section III, the normalized value pmax does
not converge in the limit ∆ι- ≡ (ι-i− ι-i−1)→ 0. Lebesgue
integration is the only viable way to count the measure
of sufficiently irrational ι-. For a given d and k, the distri-
bution of Diophantine numbers in ι--space can be treated
as density points [20], and calculating their total measure
would allow calculation of pmax.

Though mathematicians such as Khinchin and Niven
have made progress on the measure theory of classes of ir-
rationals [21, 22], we have not found a complete explana-
tion in the literature of how µ(Dd,k) depends on d and k.
Physically, the fractal pressure profile can range from es-
sentially unflattened (d→ 0), in which case pmax → 1, to
totally flattened (large d, pmax → 0). Through this tran-

sition, some irrational numbers must gradually be lost
from the set of gradient-supporting rotational-transform.
Understanding this measure as a function of the Diophan-
tine parameters requires knowing which numbers exist in
the Diophantine set for these cases and those in between,
and what fraction of the real line these numbers cover.

Immediately, it is seen that no rational number exists
in the Diophantine set, because every rational number
is surrounded by and included inside a flattened rational
window. Moreover, some portion of the irrational num-
bers that are too close to a rational are also discluded
from the set: these insufficiently irrational numbers ω
have |ω − n/m| < d/mk for some particular n/m. The
remaining noteworthy irrationals, relatively far from all
rational intervals, should be united by some characteris-
tics. For reference, the following discussions on number
classifications are summarized in Table I.

Ranking irrationals in this manner is aided by repre-
senting real numbers ω in the continued fraction form:

ω =
1

a1 +
1

a2 +
1

a3 + · · ·

≡ [a1, a2, a3, · · · ] (14)

where ω ∈ [0, 1], and {ai}Ni=1 are all integral and are
called elements of ω. Rational numbers have finite con-
tinued fraction expansions with N <∞, while irrational
numbers have an infinite number of elements. Truncating
the continued fraction expansion gives the convergents to
ω, which are closer rational approximants to ω than any
other rationals with same- or lower-order denominators.
From the size and order of these elements ai, and from the
behavior of the resulting convergents, many more esoteric
properties of the irrational numbers can be analyzed.

For instance, there are major differences between num-
bers whose elements ai become arbitrarily large versus
those whose elements remain finite. A definitive volume
by Khinchin [21] builds up a theory of continued fractions
and the real numbers they approximate. Khinchin con-
siders bounded-element irrationals whose continued frac-
tion expansions have elements ai < M, ∀i, where M ∈ Z.
Exploiting this property and other constraints on the ra-
tional approximation of irrationals, Khinchin proves that,
for sufficiently small d, the inequality

∣∣∣∣ω −
n

m

∣∣∣∣ <
d

m2
(15)

has no solution for integers n and m > 0, if and only
if the irrational ω has bounded elements. Due to the
theorem, all such irrationals with bounded elements are
Diophantine numbers for k = 2 and some d > 0, and all
Diophantine numbers have bounded elements for k = 2.
Increasing k further only decreases the size of rational
regions, so bounded-element irrationals remain Diophan-
tine for any k ≥ 2.

One famous class of irrationals is the noble numbers,
whose continued fraction expansions end in an infinite
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Set Examples Measure µ on [0, 1]

Rationals Q 1
2 ,

355
113 µ(Q) = 0

Irrationals I π, ϕ = 1+
√
5

2 µ(I) = 1

Brjuno Numbers B ϕ, [a1, a2, · · · , 1̄], ai ∈ N µ(B) = 1

jth-order Brjuno numbers [12] Bj [10, 10, 10, 102010, · · · ] ∈ B2 µ(Bj) = 1, but µ(Bj \ Bj+1) = 0

Diophantine numbers D ϕ, [1, 1, 1,M <∞, 1̄] µ(D) = µ(B∞) = 1

Diophantine of type (d, k) Dd,k [1, 2, 2, 1̄] ∈ D0.2,2 µ(Dd,k) = function of d, k

Bounded-element irrationals Dd>0,2 [a1, a2, · · · ], ai ≤M µ(Dd>0,2) = 0

TABLE I. Several classifications of real numbers, selected as foils to the Diophantine set. Each set is accompanied by an
arbitrary selection of elements it contains, as well as by its measure on the real line.

tail of 1s. For these numbers (among them the golden
mean ϕ), ai = 1 for all i greater than some integer k.
Since noble numbers have a finite number of elements
that are not one, they have a maximum element and are
thus bounded-element irrationals. For this reason, they
are included in the Diophantine set; in fact, they lend the
pressure profile its fractal nature, as shown in Section II.

With this relevant subset in hand, we can now investi-
gate whether subsets like the noble numbers contribute
any measure to the full set Dd,k. A bounded-element irra-
tional can be written as a countable infinity of continued-
fraction elements, and each element is an integer smaller
than some finite number M . In this way, this class of
irrationals can be listed in a one-to-one correspondence
with the natural numbers. As such, the bounded-element
irrationals are also countably infinite, and any countable
set of discrete points has no measure. Therefore, only
allowing pressure gradients on the bounded-element irra-
tionals leaves a trivial pressure profile. To have non-zero
measure, the Diophantine set must include an uncount-
able infinity of other irrationals.

The above line of reasoning suggests investigation of a
broader classification of irrationals: the Brjuno sets [23].
The j-th order set of Brjuno numbers, Bj , includes all
irrationals ω that have a finite Brjuno sum:

Bj ≡
{
ω :

∞∑

i=0

log(mi+j)

mi
<∞

}
, (16)

where ml is the denominator of the l-th convergent to
ω. The standard Brjuno set B1 ≡ B is uncountably
infinite, so it may contain the finite measure that the
Diophantine set needs. In addition, the sets Bj form a
strictly-increasing, nested sequence of subsets: Bj+1 (
Bj ( Bj−1 · · · ; this stratification could serve as an anal-
ogy to the sorting of irrationals that occurs between a
full-measure, low-d high-k Diophantine set and its zero-
measure counterpart with high d and low k.

A study by Lee [12] has related the Diophantine num-
bers and the Brjuno sets with a stunning proof of in-
clusion: the entire Diophantine set for any d and all

k ≥ 2 is contained within the infinite-order Brjuno set,
Dd,k ⊂ B∞. In other words, the Diophantine set for
k > 2 derives its measure from an uncountable number
of irrationals whose elements are unbounded, but whose
convergent denominators grow very slowly. This growth
rate is slower than can be described by the Brjuno clas-
sification scheme, so that comparisons between the Dio-
phantine set and Bj for any finite j will not lead to more
understanding of µ(Dd,k). Perhaps a separate function
better captures the slow growth of Diophantine conver-
gent denominators.

For now, it is clear that the measure of the Diophan-
tine set arises not from the set of bounded element ir-
rationals, but from irrationals whose elements grow to
infinity at miniscule rates. It is not yet known whether
irrationals with slower element growth rates correspond
to irrationals that stay in the Diophantine set longer as k
decreases, or whether these quantities are otherwise un-
related. Therefore, a more productive line of inquiry will
rely on classifying the Diophantine set via an immedi-
ately calculable parameter.

As the Diophantine parameters enlarge the widths of
flattened rational intervals, some irrational flux surfaces
transition from supporting a pressure gradient to being
overlapped by a nearby rational region. For a given k,
each noble value of ι- sees this transition occur at a par-
ticular d, termed d∗, where the closest rational interval
comes infinitesimally close to the irrational surface. This
critical quantity d∗ is suitable for parameterizing the de-
gree of irrationality for a given noble value of ι-.

The parameter d∗(ω, k) is defined for all irrationals ω
by

ω ∈ Dd∗,k; ω /∈ Dd∗+ε,k, ε > 0. (17)

All numbers in the Diophantine set have d∗ > 0. This
value d∗ sorts flux surfaces by their ability to support a
pressure gradient in a system with general nonaxisym-
metric perturbations; comparing the degree of irrational-
ity of two flux surfaces is equivalent to comparing their
d∗. Thus, we define robustness as a physical quantity
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of flux surfaces: if an irrational surface with ι-a has
d∗(ι-a, k) > d∗(ι-b, k) versus another surface with ι-b, then
the surface with ι-a is said to be more robust than its
counterpart with ι-b.

For some demonstrative irrationals, calculating d∗ is
numerically trivial. Since convergents are the best ratio-
nal approximants to irrationals, the parameter d∗ will be
set by one particularly close rational ñ/m̃ out of all n/m:

∣∣∣∣ω −
ñ

m̃

∣∣∣∣ = min

(∣∣∣∣ω −
n

m

∣∣∣∣
)

=
d∗
m̃k

, (18)

or d∗ = |ωm̃k − ñm̃k−1|. Here and below, the word
“close” does not correspond to raw distance, but instead
to distance weighted by the size of denominator m.

As long as the closest rational ñ/m̃ has m̃ not too
high, it is straightforward to calculate d∗. Luckily, rep-
resentation by continued fraction expansion can easily
inform whether the closest rational is low- or high-order.
The closest rational approximant is generally the con-
vergent [a1, a2, · · · aj ], where aj+1 is the largest element
in the continued fraction expansion for a particular irra-
tional. Thus, the closest rational is easy to find for any
noble number with a relatively small number of elements
greater than one, and for these numbers finding d∗ is
straightforward. Following the same logic, any irrational
ω with bounded elements ai has a well-defined d∗(ω, k).

Given this ease of computation, a database of bounded-
element irrational numbers has been constructed, gener-
ated by iterating over continued fraction representations.
These values can be sorted according to their values of
d∗, in search of number-theoretical rules that govern the
robustness of these surfaces in relation to one another.
Strict patterns are not easy to come by, with some large-
scale trends breaking down for outlier pairs of irrationals.
Numbers that otherwise seem nearby can have drasti-
cally different d∗, based on properties not immediately
discernible through continued fraction analysis or classi-
fication into sets.

This task of seeking the most irrational flux surfaces
is heavily reminiscent of an earlier search for stochastic
transitions in the standard map. Greene calculated a
quantity f , the mean residue, through laborious itera-
tion of the map, and used it to classify surfaces by the
irrationality of their rotational-transform [24]. The Dio-
phantine quantity d∗ is much easier to calculate than
Greene’s residue f . However, the two quantities can be
shown to mirror each other, down to the numerical de-
tails of Greene’s conclusions. Both methods yield sort-
ings of the irrationals that are intimidating to analyze
with pure theory, but which obey well-defined rules that
can be demonstrated by extensive numerical experimen-
tation. Below, we parallel each of Greene’s assertions
about the residue f with directly analogous statements
that can be made about the Diophantine parameter d∗:

• As k decreases, the measure of Dd,k decreases
monotonically.

0.20 0.25 0.30 0.35 0.40 0.45

ι-

0.15

0.20

0.25

0.30

0.35

d∗

0

1

2

3

4

5

M

FIG. 6. A database of noble irrational numbers ω which have
maximum element M ≤ 5 (M is represented by color). Each
ω has its location on the real line plotted against the value
d∗(ω, k = 2). The real line [0, 1] is only half shown, since
these calculations are symmetric about ι- = 1/2.

• As a rule, irrationals with maximum element M are
more robust than those with maximum element N
if M < N . This strict condition can be seen in the
clean horizontal divisions between irrationals with
different maximum elements, shown in Fig. 6.

• The parameter d∗ clarifies how robust an irrational
surface is to perturbation, just as Greene’s residue
f does.

• The most noble surface in our system (ι- = 1/ϕ or
1− 1/ϕ) is the most robust. This can be seen in
the uppermost point of Fig. 6.

• Just as Greene identifies KAM surfaces wherever
f < 1, the equilibria here have pressure gradi-
ents only on surfaces with Diophantine rotational-
transform.

• Greene’s trivial case of connected stochasticity oc-
curs for the standard map parameter k > k∗c ,
whereas the pressure profile here is trivially zero
for Diophantine parameters k ≤ 2 or d∗ ≥ 2− ϕ.

Despite these gains in understanding, a more precise
model that predicts the robustness of a given irrational
without calculating d∗ has not yet been derived analyti-
cally. Various rules that dictate the robustness of a sub-
set of irrationals are rarely valid when applied to a larger
range.

V. FRACTAL PROFILES IN IDEAL MHD

Armed with a numerical discretization method that
converges to the well-posed mathematics of a fully frac-
tal pressure, we can now calculate the plasma profiles
compatible with a Diophantine pressure gradient. As
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FIG. 7. The pressure as a function of normalized minor ra-
dius. All calculations use a grid resolution with F15, and
Diophantine parameters d = 0.1 and k = 2.2.

described in the introduction, toroidal geometry neces-
sitates a non-smooth pressure profile due to the small-
denominator resonances between toroidal and poloidal
field line rotation. However, solving for ideal profiles in
a fully 3D system introduces many difficulties [25, 26].
Calculating the fractal pressure in cylindrical geometry
provides a test-bed for isolating the effects of fractal pres-
sure profiles before taking on the full 3D case.

The fundamental force-balance equation of ideal MHD
equilibria is ∇p = J × B. Given Ampere’s law
J = ∇×B (setting µ0 = 1), the axial magnetic field
equation becomes

B′z = − 1

R2 + ι-2r2

(
p′R2

Bz
+Bz(r

2ι-ι-′ + 2rι-2)

)
, (19)

where R is the major radius and all primes denote dif-
ferentiation with respect to r. With B′z(r) determined
as a function of Bz(r), ι-(r), and ∇p(r), the magnetic
field component Bz(r) can be found at all points on the
irregular grid for r.

Only the free parameter ι-(r) must be prescribed, here
chosen as ι-(r) = 1 − 7r2/8 to correspond qualitatively
with standard tokamak field structure. For convenience,
the pressure gradient is simply chosen to be −1 on all
surfaces where ι- is Diophantine; the pressure gradient
p′(ι-) could be multiplied by any smooth function to re-
flect various physical systems, without changing its frac-
tal structure. For these calculations, p′(ι-) was calculated
by flattening rationals on the Farey tree F15, using Dio-
phantine parameters d = 0.1 and k = 2.2. This profile
was then translated to p′(r) via the prescribed rotational-
transform profile above. The resulting pressure profile is
shown in Fig. 7.

This pressure gradient profile p(r) can be input into the
cylindrical differential equation above, and finally solved

0.0 0.2 0.4 0.6 0.8 1.0
r/a

0.8

1.2
Bz(r)

FIG. 8. The axial component of the magnetic field, Bz(r).

0.0 0.2 0.4 0.6 0.8 1.0
r/a

−0.4

0.0

0.4

0.8

1.2
Jθ(r)

Jz(r)

FIG. 9. Two components of the plasma current J , shown as
a function of normalized minor radius.

for B′z(r) with a piecewise fourth-order Runge-Kutta al-
gorithm. Then, the remaining field and current compo-
nents Bθ(r), Jθ(r), and Jz(r) can all be found by simple
multiplication and differentiation of the result for Bz(r).
The magnetic field structure, shown in Fig. 8, parallels
the pressure: it is continuous, but only smooth on ratio-
nal intervals. As shown in Fig. 9, the current parallels the
structure of the pressure gradient: the current is discon-
tinuous on all Diophantine numbers. In the discretized
case shown here, the discontinuities occur between ratio-
nal and irrational intervals, but in the fractal limit there
are no irrational intervals: each of the discontinuities is
pointwise in the infinite-resolution case.

Non-smooth pressure has introduced a fundamentally
different structure into the otherwise straightforward
cylindrical equilibrium. The pressure and magnetic field
may be continuous, but the current density jumps be-
tween two distinct solutions depending on whether the
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FIG. 10. Shown is a smoothed equilibrium which rounds the
sharp corners of the input fractal pressure profile. On top, a
zoom of the pressure profile is shown around a single flattened
region; in the center, the full range of Jθ(r) is shown; on the
bottom, a zoom into Jθ(r) displays the oscillatory structure
of the smoothed current density.

rotational-transform is Diophantine or not. Such radi-
cally strange behavior, with interleaved sets of flux sur-
faces maintaining disjoint current densities, must be a
unique product of ideal MHD, since non-ideal effects like
finite Larmor radii or resistivity will smooth out the equi-
librium. What will happen to these current density dis-
continuities when the pressure is smoothed?

As a proxy for introducing resistive effects, we repeat
the same cylindrical equilibrium equation as above, but
instead consider a smoothed version of the fractal pres-
sure profile. To eliminate non-smooth corners between
rational and irrational regions, the pressure profile was
spatially smoothed with a third-order Savitzky-Golay fil-
ter [27]. This filter leads to slight overshoots, but has suf-
ficient response to round corners but maintain flat pres-
sure on the smallest rational regions. The smoothed pres-
sure was fed through the same differential equation solver
for Bz(r) as before to compute the resulting “smooth”
MHD equilibrium. Results for the smoothed Jθ(r) are
shown in Fig. 10. The current density now oscillates
continuously between the rational and irrational values
from the ideal case. Where the measure of Diophantine ι-
is high, Jθ remains mostly on the upper irrational curve.
It dips toward lower values only when the measure of ra-
tional regions is significant. As is seen in the figure, this
behavior appears stochastic from afar, but ultimately re-

flects the underlying order of the Diophantine numbers.
While the fractally flattened pressure suppresses infi-

nite currents on rational flux surfaces, it results in discon-
tinuities in J on all sufficiently irrational surfaces. The
smoothed variant shown above replaces these discontinu-
ities with oscillations which are just as unusual. These
fractal profiles are physically acceptable, whereas infinite
currents from small denominators were not. Still, they
diverge from standard assumptions about smooth varia-
tions of plasma parameters. Ideal MHD and many other
descriptions of confined plasmas predict this type of frac-
tal behavior because non-smoothness is an inescapable
consequence of 3D resonances.

Following the discussions on grid mechanics in Section
III, we have confidence that these numerical representa-
tions of plasma equilibria are correctly converging on a
true fractal limit. The explorations into the measure of
the Diophantine set in Section IV further support that
these equilibria rest on sturdy mathematical ground. The
Diophantine pressure profile we defined in Section II is a
toy model that oversimplifies the full toroidal case, but it
still captures the difference between a confining plasma
where pressure gradients are possible and one that is
dominated by flattening rational resonances.

Identifying the distribution of rational and irrational
rotational-transform in a given equilibrium provides in-
sight into different modes of plasma behavior. The
measure-theoretical quantity µ(Dd,k) is a quantitative
measure of the plasma volume fraction where currents,
pressures and field behave in qualitatively “irrational”
ways. Any prediction about this fractal behavior relies
not just on numerical methods for calculating profiles,
but on fundamental number and measure theory to en-
sure that numerics converge appropriately.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy and its Office of Science and Fusion Energy Sci-
ences through contract DE-AC02-09CH11466.

1J. Aguirre, R. L. Viana, and M. A. F. Sanjuan, “Fractal struc-
tures in nonlinear dynamics,” Rev. Mod. Phys. 81, 333–386
(2009).

2D. F. Escande, “Contributions of plasma physics to chaos and
nonlinear dynamics,” Plasma Phys. Control. Fusion 58, 113001
(2016).

3A. C. Mathias, R. L. Viana, T. Kroetz, and I. L. Caldas, “Fractal
structures in the chaotic motion of charged particles in a mag-
netized plasma under the influence of drift waves,” Physica A:
Stat. Mech. and Applications 469, 681–694 (2017).

4V. Budaev, G. Fuchs, R. Ivanov, and U. Samm, “Fractal dimen-
sionality for different transport modes in the turbulent boundary
plasma of TEXTOR,” Plasma Phys. Control. Fusion 35, 429–437
(1993).

5J. D. Meiss, “Symplectic maps, variational principles, and trans-
port,” Rev. Mod. Phys. 64 (3), 795 (1992).

6V. I. Arnol’d, “Proof of a theorem of A. N. Kolmogorov on the
preservation of conditionally periodic motions under a small per-
turbation of the Hamiltonian,” Uspehi Mat. Nauk 18, 13–40
(1963).



12

7L. S. Solov’ev and V. D. Shafranov, Reviews of Plasma Physics,
1st ed., edited by M. A. Leontovich, Vol. 5 (Plenum, New York,
NY, 1970).

8S. R. Hudson and B. F. Kraus, “Smooth magnetohydrody-
namic equilibria with arbitrary, three-dimensional boundaries,”
J. Plasma Phys. submitted (2017).

9J.-C. Yoccoz, “An introduction to the small divisors problems,”
in From Number Theory to Physics, Vol. 5, edited by M. Wald-
schmidt, P. Moussa, J.-M. Luck, and C. Itzykson (Springer-
Verlag, Berlin, 1992) 1st ed., pp. 659–679.

10B. V. Chirikov, “A universal instability of many-dimensional os-
cillator systems,” Phys. Reports 52 (5), 263–379 (1979).

11H. Grad, “Toroidal containment of a plasma,” Phys. Fluids 10
(1), 137 (1967).

12E. F. Lee, The Structure and Geometry of the Brjuno Numbers
(PhD thesis, Boston University, 1998).

13B. B. Mandelbrot, “Self-affine fractals and fractal dimension,”
Physica Scripta 32, 257–260 (1985).

14D. H. Lehmer, “On Euler’s totient function,” Bull. Amer. Math.
Soc. 38, 745–751 (1932).

15D. K. Umberger and J. D. Farmer, “Fat fractals on the energy
surface,” Phys. Rev. Lett. 55 (7), 661 (1985).

16J. D. Hanson, “Fat-fractal scaling exponent of area-preserving
maps,” Phys. Rev. A 35 (3), 1470–1473 (1987).

17L. E. J. Brouwer, “On the structure of perfect sets of points,”
Royal Netherlands Academy Arts and Sci. 12, 785–794 (1910).

18R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, 1st ed.
(World Scientific, Singapore, 1997).

19G. Klambauer, Real Analysis, 1st ed. (Dover, Mineola, NY,
2005).

20V. I. Bogachev, Measure Theory, 1st ed. (Springer, New York,
2007).

21A. Y. Khinchin, Continued Fractions, 3rd ed. (University of
Chicago Press, Chicago, 1964).

22I. Niven, Diophantine Approximations, 1st ed. (Dover, Mineola,
NY, 2008).

23A. D. Brjuno, “Analytic form of differential equations,” Trans.
Moscow. Math. Soc. 25, 131–288 (1971).

24J. M. Greene, “A method for determining a stochastic transi-
tion,” J. Mathematical Phys. 20, 1183 (1979).

25H. Weitzner, “Ideal magnetohydrodynamic equilibrium in a non-
symmetric topological torus,” Phys. Plasmas 21, 022515 (2014).

26A. H. Boozer, “Physics of magnetically confined plasmas,” Rev.
Mod. Phys. 76, 1071 (2004).

27A. Savitzky and M. J. E. Golay, “Smoothing and differentiation
of data by simplified least squares procedures,” Analytical Chem-
istry 36 (8), 1627–1639 (1964).


